О здоровом питании и спорте

Какие основные черты сокращения гладкой мышцы. Физиологические особенности гладких мышц

В организме домашних животных гладкие мышцы находятся во внутренних органах, в стенке сосудов и коже. Гладкие мышцы в отличие от поперечно-полосатых не имеют выраженной поперечной исчерченности, сокращаются относительно медленно, отвечают сокращением на растяжение и могут длительное время находиться в сокращенном состоянии без утомления. Они состоят из удлиненных клеток веретеновидной формы. В функциональном отношении существуют различные типы гладких мышц. Одни сокращаются с определенной силой в ответ на возбуждение и не обладают спонтанной автоматической активностью (ресничная, пиломоторная, цилиарная; мышцы мигательной перепонки, мочевого пузыря, кровеносных сосудов); другие способны к спонтанной автоматической ритмической активности, которая изменяется под влиянием двигательных нервов (мышцы желудочно-кишечного тракта, мочеточников и матки).

Длина гладкомышечных клеток от 30 до 500 мкм, диаметр от 2 до 10 мкм. Каждая клетка имеет плазматическую мембрану неодинаковой толщины у разных органов, толщина и строение мембраны такие же как и у других клеток. На поверхности клеток гладких мышц имеются вдавливания внутрь клетки в виде мелких сферических карманов и боковых отростков. Боковые отростки обеспечивают звеньевую связь гладкомышечных клеток. В участке нексуса (звена) плазматические мембраны соседних клеток сливаются наружными слоями. Гладкомышечные клетки при помощи отростков группируются в длинные пучки, разделенные соединительнотканными перегородками. Диаметр пучков около 100 мкм. Они ветвятся, формируя тяжи переходов от одного пучка к другому, что важно для деятельности мышцы как единой системы.

Гладкие мышцы иннервируются симпатическими и парасимпатическими нервами. Одно нервное волокно может контактировать с несколькими клетками.

Сократительный аппарат клеток гладких мышц состоит из протофибрилл, сгруппированные в миофибриллы, которые размещаются в клетке параллельно друг другу. В миофибриллах находятся тонкие нити протофибрилл трех типов: актиновые, миозиновые и промежуточные. Первые два типа распределены неравномерно, поэтому клетки гладких мышц не имеют поперечной исчерченности. Нити миозина короткие, они образуют димеры, от которых отходят поперечные мостики с головками. Длинные актиновые и короткие миозиновые нити участвуют в укорочении гладкомышечной клетки при сокращении. В сокращении принимают участие и промежуточные протофибриллы.

Возбудимость гладких мышц . Гладкие мышцы менее возбудимы, чем скелетные: порог возбудимости выше, а хроноксия больше. Мембранный потенциал гладких мышц у различных животных составляет от 40 до 70 мВ. Наряду с ионами Nа+,К+ важную роль в создании потенциала покоя играют также ионы Са++ и Сl-.


Электрическая активность многих клеток гладких мышц внутренних органов проявляется спонтанно, т.е. клетки самовозбуждаются. Следовательно, возбуждение не обусловлено передачей к мышце нервных импульсов, а носит миогенный (как в сердечной мышце) характер. Эту особенность обозначают как “автоматию” гладких мышц.

Сокращения гладких мышц имеют существенные различия по сравнению со скелетными мышцами:

1. Скрытый (латентный) период одиночного сокращения гладкой мышцы значительно больше, чем скелетной (например в кишечной мускулатуре кролика он достигает 0,25 - 1 с).

2. Одиночное сокращение гладкой мышцы значительно продолжительнее, чем скелетной. Так, гладкие мышцы желудка лягушки сокращаются в течение 60 - 80, кролика - 10-20 с.

3. Особенно медленно происходит расслабление после сокращения.

4. Благодаря продолжительному одиночному сокращению гладкая мышца может быть приведена в состояние длительного стойкого сокращения, напоминающего тетаническое сокращение скелетных мышц относительно редкими раздражениями; в этом случае интервал между отдельными раздражениями составляет от одной до десятков секунд.

5. Энергетические расходы при таком стойком сокращении гладкой мышцы очень малы, что отличает это сокращение от тетануса скелетных мышц, поэтому гладкие мышцы потребляют относительно небольшое количество кислорода.

6. Медленное сокращение гладких мышц сочетается с большой силой. Например, мускулатура желудка птиц способен поднимать массу, равную 1 кг на 1 см2 своего поперечного сечения.

7. Одно из физиологически важных свойств гладких мышц - реакция на физиологически адекватный раздражитель растяжение. Любое растяжение гладких мышц вызывает их сокращение. Свойство гладких мышц реагировать на растяжение сокращением играет важную роль для осуществления физиологической функции многих гладкомышечных органов (например, кишечника, мочеточников, матки).

Тонус гладких мышц . Способность гладкой мышцы длительное время находиться в напряжении в покое под влиянием редких импульсов раздражения обозначают тонусом . Длительные тонические сокращения гладких мышц особенно отчетливо выражены в сфинктерах полых органов, стенках кровеносных сосудов.

Все перечисленные факторы (тетанизирующая частота разрядов пейсмекеров, медленное скольжение филаментов, постепенное расслабление клеток) способствуют длительным стойким сокращениям гладких мышц без утомления и при небольшой затрате энергии.

Пластичность и эластичность гладких мышц . Пластичность в гладких мышцах хорошо выражено, что имеет большое значение для нормальной деятельности гладких мышц стенок полых органов: желудка, кишечника, мочевого пузыря. Например, благодаря пластичности гладкой мускулатуры стенок мочевого пузыря давление внутри его относительно мало изменяется при разной степени его наполнения. Эластичность в гладких мышцах выражена слабее, чем в скелетных, но гладкие мышцы способны очень сильно растягиваться.

Гладкие мышцы входят в состав внутренних органов. Благодаря сокращению они обеспечивают двигательную (моторную) функцию них органов (пищеварительный канал, мочеполовая система , кровеносные сосуды и т.д.). В отличие от скелетных мышц, гладкие мышцы являются непроизвольными.
Морфо-функциональная структура гладких (не исполосованных) мышц. Основной структурной единицей гладких мышц является мышечная клетка, которая имеет веретенообразную форму и покрыта снаружи плазматической мембраной. Под электронным микроскопом в мембране можно заметить многочисленные углубления - кавеолы, которые значительно увеличивают общую поверхность мышечной клетки. Сарколеммы непосмугованих мышечной клетки включает в себя плазматическую мембрану вместе с базальной мембраной, которая покрывает ее извне, и прилегающими коллагеновыми волокнами. Основные внутриклеточные элементы:
ядро, митохондрии, лизосомы, микротрубочки, саркоплазматической сети и сократительные белки.
Мышечные клетки образуют мышечные пучки и мышечные слои. Межклеточное пространство (в 100 нм и более) заполнен эластичными и коллагеновыми волокнами, капиллярами, фибробластами и др.. В некоторых участках мембраны соседних клеток лежат очень плотно (щель между клетками составляет 2-3 нм). Предполагают, что эти участки (нексус) служат для межклеточного связи, передачи возбуждения. Доказано, что одни гладкие мышцы содержат большое количество нексус (сфинктер зрачка, циркулярные мышцы тонкой кишки и др.), у других их мало или совсем нет (семявыносящих протоков, продольные мышцы кишок). Между непосмугованих мышечными клетками существует также промежуточный, или десмоподибний, связь (через утолщение мембраны и с помощью отростков клеток). Очевидно, эти связи имеют значение для механического соединения клеток и передачи механической силы клетками.
Благодаря хаотичному распределению миозинових и актиновых протофибрилл клетки гладких мышц не поперечнополосатые, как скелетные и сердечная. В отличие от скелетных мышц, в гладких мышцах нет Т-системы, а саркоплазматической сети составляет только 2-7% объема миоплазмы и не имеет связей с внешней средой клетки.
Физиологические свойства гладких мышц. Гладкомышечные клетки, - как-поперечнополосатые, сокращаются вследствие скольжения актиновых протофибрилл между миозиновои, однако скорость скольжения и гидролиз АТФ, а значит, и скорость сокращения, в 100-1000 раз меньше, чем в поперечнополосатых мышцах. Благодаря этому гладкие мышцы - хорошо приспособлены для длительного скольжения с небольшим затратой энергии и без усталости.
Гладкие мышцы с учетом способности генерировать ПД в ответ на пороговое или надгиорогове раздражение условно делят на фазные и тонические. Фазные мышцы генерируют полноценный ПД, тонические - только местный, хотя им присущ и механизм генерации полноценных потенциалов. Неспособность тонических мышц к ПД объясняется высокой калиевой проницаемостью мембраны, которая препятствует развитию регенеративной деполяризации.
Величина мембранного потенциала гладкомышечных клеток непосмугованих мышц варьирует от -50 до -60 мВ. Как и в других мышцах, в том числе и в нервных клетках, в его образовании принимают участие главным образом к +, Na +, Cl-. В гладкомышечных клетках пищеварительного канала, матки , некоторых сосудах мембранный потенциал нестабилен, наблюдаются спонтанные колебания в виде медленных волн деполяризации, на вершине которых могут появляться разряды ПД. Длительность ПД гладких мышц колеблется от 20-25 мс до 1 с и более (например, в мышцах мочевого пузыря), т.е. она
длиннее, чем продолжительность ПД скелетных мышц. В механизме ПД гладких мышц рядом с Na + большую роль играет Са2 +.
Спонтанная миогенная активность. В отличие от скелетных мышц, гладкие мышцы желудка, кишок, матки, мочеточников имеют спонтанную миогенные активность, т.е. развивают спонтанные тетаногиодибни сокращения. Они хранятся в условиях изоляции этих мышц и при фармакологическом выключении интрафузальных нервных сплетений. Итак, ПД возникает в собственно гладких мышцах, а не обусловлен передачей в мышцы нервных импульсов.
Эта спонтанная активность имеет миогенные происхождения и возникает в мышечных клетках, которые выполняют функцию водителя ритма. В этих клетках местный потенциал достигает критического уровня и переходит в ПД. Но за реполяризацию мембраны спонтанно возникает новый местный потонциал, который вызывает еще один ПД, и т.д. ПД, распространяясь через нексус на соседние мышечные клетки со скоростью 0,05-0,1 м / с, охватывает весь мышцу, вызывая его сокращение. Например, перистальтические сокращения желудка возникают с частотой 3 раза за 1 мин, сегментарные и Маятникообразные движения толстой кишки-в 20 раз за 1 мин в верхних отделах и 5-10 за 1 мин - в нижних. Таким образом, гладкие мышечные волокна названных внутренних органов обладают автоматизмом, который проявляется их способностью ритмически сокращаться при отсутствии внешних раздражителей.
Какова причина возникновения потенциала в клетках гладких мышц водителя ритма? Очевидно, он возникает вследствие уменьшения калиевой и увеличение натриевой и (или) кальциевой проницаемости мембраны. Что касается регулярного возникновения медленных волн деполяризации, наиболее выраженных в мышцах ЖКТ, го нет достоверных данных об их ионное происхождения. Возможно, определенную роль играет уменьшение первоначального инактивирующего компонента калиевого тока при деполяризации мышечных клеток вследствие инактивации соответствующих ионных калиевых каналов. Благодаря этому становится возможным возникновение повторных Г1Д.
Эластичность и растяжимость гладких мышц. В отличие от скелетных мышц, гладкие при растяжении себя как пластичные, эластичные структуры. Благодаря пластичности гладкая мышца может быть полностью расслаблен как в сокращенном, так и в растянутыми состоянии. Например, пластичность гладких мышц стенки желудка или мочевого пузыря по мере наполнения этих органов предотвращает повышение внутриполостного давления. Чрезмерное растяжение часто приводит к стимулированию сокращения, которое обусловлено деполяризацией клеток водителя ритма, возникающий при растяжении мышцы, и сопровождается повышением частоты ПД, а вследствие этого - усилением сокращения. Сокращение, которое активизирует процесс растяжения, играет большую роль в саморегулировании базального тонуса кровеносных сосудов.
Механизм сокращения гладких мышц. Обязательным условием возникновения сокращение гладких мышц, как и скелетных, е увеличение концентрации Са2 + в миоплазми (до 10в-5 М). Считается, что процесс сокращения активизируется преимущественно внеклеточным Са2 +, поступающего в мышечные клетки через потенциалзависимые Са2 +-каналы.
Особенность нервно-мышечной передачи в гладких мышцах заключается в том, что иннервация осуществляется вегетативной нервной системой и она может оказывать как возбуждающий, так и тормозящее влияние. По типу различают холинергические (медиатор ацетилхолин) и адренергические (медиатор норадреналин) медиаторы. Первые обычно содержатся в мышцах пищеварительной системы, вторые - в мышцах кровеносных сосудов.
Один и тот же медиатор в одних синапсах может быть возбуждающих, а в других - тормозным (в зависимости от свойств циторецепторив). Адренорецепторы делят на а-и В-. Норадреналин, воздействуя на а-адренорецепторы, суживает кровеносные сосуды и тормозит моторику пищеварительного тракта, а воздействуя на В-адренорецепторы, стимулирует деятельность сердца и расширяет кровеносные сосуды некоторых органов, расслабляет мышцы бронхов. Описаны нервно-мышечно-. ную передачу в гладких мышцах за помощью и других медиаторов.
В ответ на действие возбуждающего медиатора происходит деполяризация клеток гладких мышц, которая проявляется в виде возбуждающего синаптической потенциала (ССП). Когда он достигает критического уровня, возникает ПД. Это происходит тогда, когда до нервного окончания друг за другом подходят несколько импульсов. Возникновение ЗСГИ является следствием увеличения проницаемости постсинаптической мембраны для Na +, Са2 + и СИ ".
Тормозной медиатор вызывает гиперполяризацию постсинаптической мембраны, что проявляется в тормозном синаптического потенциале (ГСП). В основе гиперполяризации лежит повышение проницаемости мембраны в основном для К +. Роль тормозного медиатора в гладких мышцах, возбуждаемые ацетилхолином (например, мышцы кишки, бронхов), играет норадреналин, а в гладких мышцах, для которых возбуждающих медиатором является норадреналин (например, мышцы мочевого пузыря), - ацетилхолин.
Клинико-физиологический аспект. При некоторых заболеваниях, когда нарушается иннервация скелетных мышц, их пассивное растяжение или смещение сопровождается рефлекторным повышением их тонуса, т.е. устойчивости к растяжению (спастичность или ригидность).
При нарушении кровообращения, а также под действием некоторых продуктов метаболизма (молочной и фосфорной кислот), ядовитых веществ, алкоголя, усталости, снижения температуры мышц (например, при длительном плавании в холодной воде) после длительного активного сокращения мышцы может возникать контрактура. Чем больше нарушается функция мышцы, тем сильнее выражена контрактурно последействие (например, контрактура жевательных мышц при патологии челюстно-лицевой области). Каково происхождение контрактуры? Считается, что контрактура возникла вследствие уменьшения в мышце концентрации АТФ, что привело к образованию постоянной связи между поперечными мостиками и актиновыми протофибрилл. При этом мышца теряет гибкость и становится твердым. Контрактура проходит, мышца расслабляется, когда концентрация АТФ достигает нормального уровня.
При заболеваниях типа миотонии клеточные мембраны мышц возбуждаются так легко, что даже незначительное раздражение (например, введение игольчатого электрода при электромиографии) обусловливает разряд мышечных импульсов. Спонтанные ПД (потенциалы фибрилляции) регистрируются также на первой стадии после денервации мышцы (пока бездействие не приведет к его атрофии).
Тонические сокращения некоторых гладких мышц, особенно мышц сосудистых стенок (базальный или миогенный, тонус) активизируются преимущественно внеклеточным Са 2 +. Физиологически активные вещества и медиаторы могут вызвать снижение тонуса гладких мышц путем закрытия хемочутливих Са2 +-каналов (через активизацию хеморецепторов) или гиперполяризации, которая обусловливает подавление спонтанных ПД и закрытия потенциалзависимых Са2 +-каналов.

Гладкие мышцы имеются в стенках большинства органов пищеварения, сосудов, выводных протоков различных желез, мочевыводящей системы. Они являются непроизвольными и обеспечивают перистальтику органов пищеварения и мочевыводящей системы, поддержание тонуса сосудов. В отличие от скелетных, гладкие мышцы образованы клетками чаще веретенообразной формы и небольших размеров, не имеющими поперечной исчерченности. Миофибриллы состоят из тонких нитей актина, которые идут в различных направлениях и прикрепляющихся к разным участкам сарколеммы. Миозиновые протофибриллы расположен рядом с актиновыми. Элементы саркоплазматического ретикулума не образуют систему трубочек. Отдельные мышечные клетки соединяются между собой контактами с низким электрическим сопротивлением – нексусами , что обеспечивает распространение возбуждения по всей гладкомышечной структуре.

Свойства:

1. Возбудимость-способность тканей приходить в состояние возбуждения под действием раздражителей пороговой и сверхпороговой силы.

Гладкие мышцы менее возбудимы, чем скелетные: их пороги раздражения выше. Потенциалы действия большинства гладкомышечных волокон имеют малую амплитуду (порядка 60 мв вместо 120 мв в скелетных мышечных волокнах) и большую продолжительность - до 1-3 секунд.

2. Проводимость- способность мышечного волокна передавать возбуждение в виде нервного импульса или потенциала действия на протяжении всего мышечного волокна..

3. Рефрактерность-свойство ткани резко менять свою возбудимость при импульсном возбуждении вплоть до 0.

Рефрактерный период мышечной ткани более продолжителен, чем рефрактерный период нервной ткани.

4. Лабильность-максимальное число полных возбуждений,которое ткань может воспроизвести в единицу времени в точности с ритмом наносимых раздражений. Лабильность меньше,чем у нервной ткани (200-250 имп/с)

5. Сократимость-способность мыш.волокна изменять свою длину или свой тонус. Сокращение гладкой мускулатуры происходит более медленно и длительно. Сокращение развивается за счет кальция, входящего в клетку во время ПД.

Гладкие мышцы имеют и свои особенности:

1) нестабильный мембранный потенциал, который поддерживает мышцы в состоянии

постоянного частичного сокращения – тонуса;

2) самопроизвольную автоматическую активность;

3) сокращение в ответ на растяжение;

4) пластичность (уменьшение растяжения при увеличении растяжения);

5) высокую чувствительность к химическим веществам.

Сосудодвигательный центр, его составные части, их локализация и значение. Регуляция активности бульбарного сосудодвигательного центра. Особенности рефлекторной регуляции дыхания у лиц пожилого возраста.


Сосудодвигательный центр (СДЦ) в продолговатом мозге, на дне IV желудочка (В.Ф. Овсянников, 1871 г., открыт методом перерезки ствола мозга на различных уровнях), представлен двумя отделами (прессорный и депрессорный). Сосудодвигательный центр В. Ф. Овсянниковым в 1871 г. было установлено, что нервный центр, обеспечивающий определенную степень сужения артериального русла - сосудодвигательный центр - находится в продолговатом мозге. Локализация этого центра определена путем перерезки ствола мозга на разных уровнях. Если перерезка произведена у собаки или кошки выше четверохолмия, то артериальное давление не изменяется. Если перерезать мозг между продолговатым и спинным, максимальное давление крови в сонной артерии понижается до 60-70 мм рт. ст. Отсюда следует, что сосудодвигательный центр локализован в продолговатом мозге и находится в состоянии тонической активности, т. е. длительного постоянного возбуждения. Устранение его влияния вызывает расширение сосудов и падение артериального давления. Более детальный анализ показал, что сосудодвигательный центр продолговатого мозга расположен на дне IV желудочка и состоит из двух отделов - прессорного и депрессорного. Раздражение первого вызывает сужение артерий и подъем артериального давления, а раздражение второго - расширение артерий и падение давления.

В настоящее время считают, что депрессорный отдел сосудодвигательного центра вызывает расширение сосудов, понижая тонус прессорного отдела и снижая, таким образом, эффект сосудосуживающих нервов. Влияния, идущие от сосудосуживающего центра продолговатого мозга, приходят к нервным центрам симпатической части вегетативной нервной системы, расположенным в боковых рогах грудных сегментов спинного мозга, где образуются сосудосуживающие центры, регулирующие тонус сосудов отдельных участков тела. Спинномозговые центры способны через некоторое время после выключения сосудосуживающего центра продолговатого мозга немного повысить давление крови, снизившееся вследствие расширения артерий и артериол. Кроме сосудодвигательного центра продолговатого и спинного мозга, на состояние сосудов оказывают влияние нервные центры промежуточного мозга и больших полушарий.

Гладкие мышцы представлены в полых органах, кровеносных сосудах и коже. Гладкие мышечные волокна не имеют поперечной исчерченности. Клетки укорачиваются в результате относительного скольжения нитей. Скорость скольжения и скорость расщепления аденозинтрифосфата в 100-1000 раз меньше, чем в . Благодаря этому гладкие мышцы хорошо приспособлены для длительного стойкого сокращения без утомления, с меньшей затратой энергии.

Гладкие мышцы являются составной частью стенок ряда полых внутренних органов и участвуют в обеспечении функций, выполняемых этими органами. В частности, они регулируют кровоток в различных органах и тканях, проходимость бронхов для воздуха, перемещения жидкостей и химуса (в желудке, кишечнике, мочеточниках, мочевом и желчном пузыре), сокращение матки при родах, размер зрачка, кожного рельефа.

Гладкомышечные клетки имеют веретенообразную форму, длину 50-400 мкм, толщину 2-10 мкм (рис. 5.6).

Гладкие мышцы относятся к непроизвольным мышцам, т.е. их сокращение не зависит от воли макроорганизма. Особенности двигательной деятельности желудка, кишечника, кровеносных сосудов и кожи в известной степени определяют физиологические особенности гладких мышц этих органов.

Характеристика гладкой мускулатуры

  • Обладает автоматизмом (влияние интрамуральной нервной системы носит корригирующий характер)
  • Пластичность — способность долго сохранять длину без изменения тонуса
  • Функциональный синтиций — отдельные волокна разделены, но имеются особые участки контакта — нексусы
  • Величина потенциала покоя — 30-50 мВ, амплитуда потенциала действия меньше, чем у клеток скелетных мышц
  • Минимальная «критическая зона» (возбуждение возникает, если возбуждается некоторое минимальное число мышечных элементов)
  • Для взаимодействия актина и миозина необходим ион Ca 2+ который поступает извне
  • Длительность одиночного сокращения велика

Особенность гладких мышц — их способность проявлять медленные ритмические и длительные тонические сокращения. Медленные ритмические сокращения гладких мышц желудка, кишечника, мочеточников и других полых органов способствуют перемещению их содержимого. Длительные тонические сокращения гладких мышц сфинктеров полых органов препятствуют произвольному выходу их содержимого. Гладкие мышцы стенок кровеносных сосудов, также находятся в состоянии постоянного тонического сокращения и влияют на уровень артериального давления крови и кровоснабжение организма.

Важным свойством гладких мышц является их мистичность, т.е. способность сохранять вызванную растяжением или деформацией форму. Высокая пластичность гладких мышц имеет большое значение для нормального функционирования органов. Например, пластичность мочевого пузыря позволяет при его наполнении мочой профилактировать повышение в нем давления без нарушения процесса мочеобразования.

Чрезмерное растяжение гладких мышц вызывает их сокращение. Это происходит в результате деполяризации мембран клеток, вызванной их растяжением, т.е. гладкие мышцы обладают автоматизмом.

Сокращение, вызываемое растяжением, играет важную роль в авторегуляции тонуса кровеносных сосудов, перемещении содержимого желудочно-кишечного тракта и других процессах.

Рис. 1. А. Волокно скелетной мышцы, клетка сердечной мышцы, гладкая мышечная клетка. Б. Саркомер скелетной мышцы. В. Строение гладкой мышцы. Г. Механограмма скелетной мышцы и мышцы сердца.

Автоматизм в гладких мышцах обусловлен наличием в них особых пейсмекерных (задающих ритм) клеток. По своей структуре они идентичны другим гладкомышечным клеткам, но обладают особыми электрофизиологическими свойствами. В этих клетках возникают пейсмекерные потенциалы, деполяризующие мембрану до критического уровня.

Возбуждение гладкомышечных клеток вызывает увеличение входа ионов кальция в клетку и высвобождение этих ионов из саркоплазматического ретикулума. В результате повышения концентрации ионов кальция в саркоплазме активируются сократительные структуры, но механизм активации их в гладком волокне отличается от механизма активации в поперечно-полосатых мышцах. В гладкой клетке кальций взаимодействуете белком кальмодулином, который активирует легкие цепи миозина. Они соединяются с активными центрами актина в протофибриллах и совершают «гребок». Гладкие мышцы расслабляются пассивно.

Гладкие мышцы относятся к непроизвольным, и их не зависит от воли животного.

Физиологические свойства и особенности гладких мышц

Гладкие мышцы, так же, как и скелетные, обладают возбудимостью, проводимостью и сократимостью. В отличие от скелетных мышц, обладающих эластичностью, гладкие мышцы имеют пластичность — способность длительное время сохранять приданную им при растяжении длину без увеличения напряжения. Такое свойство важно для выполнения функции депонирования пищи в желудке или жидкостей в желчном и мочевом пузыре.

Особенности возбудимости гладкомышечных клеток в определенной мере связаны с низкой разностью потенциалов на мембране в покое (E 0 = (-30) — (-70) мВ). Гладкие миоциты могут обладать автоматией и самопроизвольно генерировать потенциал действия. Такие клетки — водители ритма сокращения гладких мышц имеются в стенках кишечника, венозных и лимфатических сосудов.

Рис. 2. Строение гладкомышечной клетки (A. Guyton, J. Hall, 2006)

Длительность ПД гладких миоцитов может достигать десятков миллисекунд, так как ПД в них развивается преимущественно за счет входа ионов Са 2+ в саркоплазму из межклеточной жидкости через медленные кальциевые каналы.

Скорость проведения ПД по мембране гладких миоцитов малая — 2-10 см/с. В отличие от скелетных мышц возбуждение может передаваться с одного гладкого миоцита на другие, рядом лежащие. Такая передача происходит благодаря наличию между гладкомышечными клетками нексусов, обладающих малым сопротивлением электрическому току и обеспечивающих обмен между клетками ионов Са 2+ и другими молекулами. В результате этого гладкая мышца проявляет свойства функционального синтиция.

Сократимость гладкомышечных клеток отличается длительным латентным периодом (0,25-1,00 с) и большой длительностью (до 1 мин) одиночного сокращения. Гладкие мышцы развивают малую силу сокращения, но способны длительно находиться в тоническом сокращении без развития утомления. Это связано с тем, что на под/держание тонического сокращения гладкая мышца расходует в 100-500 раз меньше энергии, чем скелетная. Поэтому расходуемые гладкой мышцей запасы АТФ успевают восстанавливаться даже во время сокращения и гладкие мышцы некоторых структур организма практически постоянно находятся в состоянии тонического сокращения. Абсолютная сила гладкой мышцы составляет около 1 кг/см 2 .

Механизм сокращения гладкой мышцы

Важнейшей особенностью гладкомышечных клеток является то, что они возбуждаются под влиянием многочисленных раздражителей. в естественных условиях инициируется только нервным импульсом, приходящим к . Сокращение же гладкой мышцы может быть вызвано как влиянием нервных импульсов, так и действием гормонов, нейромедиаторов, простагландинов, некоторых метаболитов, а также воздействием физических факторов, например растяжением. Кроме того, возбуждение и сокращение гладких миоцитов может произойти спонтанно — за счет автоматик.

Способность гладких мышц отвечать сокращением на действие разнообразных факторов создаст значительные трудности для коррекции нарушений тонуса этих мышц в медицинской практике. Это видно на примерах трудностей лечения бронхиальной астмы, артериальной гипертензии, спастического колита и других заболеваний, требующих коррекции сократительной активности гладких мышц.

В молекулярном механизме сокращения гладкой мышцы также имеется ряд отличий от механизма сокращения скелетной мышцы. Нити актина и миозина в гладкомышечных клетках располагаются менее упорядочение, чем в скелетных, и поэтому гладкая мышца не имеет поперечной исчерченности. В актиновых нитях гладкой мышцы нет белка тропонина и центры актина всегда открыты для взаимодействия с головками миозина. В то же время головки миозина в состоянии покоя не энергизированы. Для того чтобы произошло взаимодействие актина и миозина, необходимо фосфорилировать головки миозина и придать им избыток энергии. Взаимодействие актина и миозина сопровождается поворотом головок миозина, при котором актиновые нити втягиваются между миозиновыми и происходит сокращение гладкого миоцита.

Фосфорилирование головок миозина производится при участии фермента киназы легких цепей миозина, а дефосфорилирование — с помощью фосфатазы. Если активность фосфатазы миозина преобладает над активностью киназы, то головки миозина дефосфорилируются, связь миозина и актина разрывается и мышца расслабляется.

Следовательно, чтобы произошло сокращение гладкого миоцита, необходимо повысить активность киназы легких цепей миозина. Ее активность регулируется уровнем ионов Са 2+ в саркоплазме. Нейромедиаторы (ацетилхолин, норадрсналин) или гормоны (вазопрессин, окситоцин, адреналин) стимулируют свой специфический рецептор, вызывая диссоциацию G-белка, а-субъединица которого далее активирует фермент фосфолипазу С. Фосфолигтза С катализирует образование инозитолтрисфосфата (ИФЗ) и диацилглицерола из фосфо-инозитолдифосфата мембраны клетки. ИФЗ диффундирует к эндоплазматическому ретикулуму и после взаимодействия со своими рецепторами вызывает открытие кальциевых каналов и высвобождение ионов Са 2+ из депо в цитоплазму. Увеличение содержания ионов Са 2+ в цитоплазме является ключевым событием для инициации сокращения гладкого миоцита. Увеличение содержания ионов Са 2+ в саркоплазме достигается также за счет его поступления в миоцит из внеклеточной среды (рис. 3).

Ионы Са 2+ образуют комплекс с белком кальмодулином, и комплекс Са 2+ -кальмодулин повышает киназную активность легких цепей миозина.

Последовательность процессов, приводящих к развитию сокращения гладкой мышцы, можно описать следующим образом: вход ионов Са 2+ в саркоплазму — активация кальмодулина (путем образования комплекса 4Са 2 -кальмодулин) — активация киназы легких цепей миозина — фосфорилирование головок миозина — связывание головок миозина с актином и поворот головок, при котором нити актина втягиваются между нитями миозина — сокращение.

Рис. 3. Пути поступления ионов Са 2+ в саркоплазму гладкомышечной клетки (а) и удаления их из саркоплазмы (б)

Условия, необходимые для расслабления гладкой мышцы:

  • снижение (до 10-7 М/л и менее) содержания ионов Са 2+ в саркоплазме;
  • распад комплекса 4Са 2+ -кальмодулин, приводящий к снижению активности киназы легких цепей миозина — дефосфорилирование головок миозина под влиянием фосфатазы, приводящее к разрыву связей нитей актина и миозина.

В этих условиях эластические силы вызывают относительно медленное восстановление исходной длины гладкомышечного волокна и его расслабление.

Важным свойством гладкой мышцы является ее большая пластичность т. е. способность сохранять приданную растяжением длину без изменения напряжения. Различие между скелетной мышцей, обладающей малой пластичностью, и гладкой мышцей с хорошо выраженной пластичностью, легко обнаруживается, если их сначала медленно растянуть, а затем снять растягивающий груз. тотчас же укорачивается после снятия груза. В отличие от этого гладкая мышца после снятия груза остается растянутой до тех пор, пока под влиянием какого-либо раздражения не возникает ее активного сокращения.

Свойство пластичности имеет очень большое значение для нормальной деятельности гладких мышц стенок полых органов, например мочевого пузыря: благодаря пластичности гладкой мускулатуры стенок пузыря давление внутри него относительно мало изменяется при разной степени наполнения.

Возбудимость и возбуждение

Гладкие мышцы менее возбудимы, чем скелетные: их пороги раздражения выше, а хронаксия длиннее. Потенциалы действия большинства гладкомышечных волокон имеют малую амплитуду (порядка 60 мв вместо 120 же в скелетных мышечных волокнах) и большую продолжительность - до 1-3 секунд. На рис. 151 показан потенциал действия одиночного волокна мышцы матки.

Рефрактерный период продолжается в течение всего периода потенциала действия, т. е. 1-3 секунд. Скорость проведения возбуждения варьирует в разных волокнах от нескольких миллиметров до нескольких сантиметров в секунду.

Существует большое число различных типов гладких мышц в теле животных и человека. Большинство полых органов тела выстлано гладкими мышцами, имеющими сенцитиальный тип строения. Отдельные волокна таких мышц очень тесно примыкают друг к другу и создается впечатление, что морфологически они составляют единое целое.

Однакоэлектронномикроскопические исследования показали, что мембранной и протоплазматической непрерывности между отдельными волокнами мышечного синцития не существует: они отделены друг от друга тонкими (200-500 Å) щелями. Понятие «синцитиальное строение» является в настоящее время скорее физиологическим, чем морфологическим.

Синцитий - это функциональное образование, которое обеспечивает то, что потенциалы действия и медленные волны деполяризации могут беспрепятственно распространяться с одного волокна на другое. Нервные окончания расположены только на небольшом числе волокон синцития. Однако вследствие беспрепятственного распространения возбуждения с одного волокна на другое вовлечение в реакцию всей мышцы может происходить, если нервный импульс поступает к небольшому числу мышечных волокон.

Сокращение гладкой мышцы

При большой силе одиночного раздражения может возникать сокращение гладкой мышцы. Скрытый период одиночного сокращения этой мышцы значительно больше, чем скелетной мышцы, достигая, например, в кишечной мускулатуре кролика 0,25- 1 секунды. Продолжительность самого сокращения тоже велика (рис. 152 ): в желудке кролика она достигает 5 секунд, а в желудке лягушки - 1 минуты и более. Особенно медленно протекает расслабление после сокращения. Волна сокращения распространяется по гладкой мускулатуре тоже очень медленно, она проходит всего около 3 см в секунду. Но эта медленность сократительной деятельности гладких мышц сочетается с большой их силой. Так, мускулатура желудка птиц способна поднимать 1 кг на 1см2 своего поперечного сечения.

Тонус гладкой мышцы

Вследствие медленности сокращения гладкая мышца даже при редких ритмических раздражениях (для желудка лягушки достаточно 10-12 раздражений в минуту) легко переходит в длительное состояние стойкого сокращения, напоминающее тетанус скелетных мышц. Однако энергетические расходы при таком стойком сокращении гладкой мышцы очень малы, что отличает это сокращение от тетануса поперечнополосатой мышцы.

Причины, вследствие которых гладкие мышцы сокращаются и расслабляются много медленнее, чем скелетные, полностью еще не выяснены. Известно, что миофибриллы гладкой мышцы так же, как и скелетной мышцы, состоят из миозина и актина. Однако в гладких мышцах нет поперечной исчерченности, нет мембраны Z и они гораздо богаче саркоплазмой. По-видимому, эти особенности структуры гладких мышечных волн и обусловливают медленный темп сократительного процесса. Этому соответствует и относительно низкий уровень обмена веществ гладких мышц.

Автоматия гладких мышц

Характерной особенностью гладких мышц, отличающей их от скелетных, является способность к спонтанной автоматической деятельности. Спонтанные сокращения можно наблюдать при исследовании гладких мышц желудка, кишок, желчного пузыря, мочеточников и ряда других гладкомышечных органов.

Автоматия гладких мышц имеет миогенное происхождение. Она присуща самим мышечным волокнам и регулируется нервными элементами, которые находятся в стенках гладкомышечных органов. Миогенная природа автоматии доказана опытами на полосках мышц кишечной стенки, освобожденных путем тщательной препаровки от прилежащих к ней нервных сплетений. Такие полоски, помещенные в теплый растввр Рингера-Локка, который насыщается кислородом, способны совершать автоматические сокращения. При последующей гистологической проверке было обнаружено отсутствие в этих мышечных полосках нервных клеток.

В гладких мышечных волокнах различают следующие спонтанные колебания мембранного потенциала: 1) медленные волны деполяризации с длительностью цикла порядка нескольких минут и амплитудой около 20 мв; 2) малые быстрые колебания потенциала, предшествующие возникновению потенциалов действия; 3) потенциалы действия.

На все внешние воздействия гладкая мышца реагирует изменении частоты спонтанной ритмики, следствием которой являются сокращения и расслабления мышцы. Эффект раздражения гладкой мускулатуры кишки зависит от соотношения между частотой стимуляции и собственной частотой спонтанной ритмики: при низком тонусе - при редких спонтанных потенциалах действия - приложенное раздражение усиливает тонус при высоком же тонусе в ответ на раздражение возникает расслабление, так как чрезмерное учащение импульсации приводит к тому, что каждый следующий импульс попадает в рефрактерную фазу от предыдущего.

Вам также будет интересно:

Наш клуб является коллективным членом ФДМО (Федерация джиу-джитсу Московской области),...
 Станислав SportPanda Хочешь накачаться в домашних условиях за 2-3 месяца к лету,...
Подъем ног в висе по праву можно назвать одним из самых эффективных упражнений на пресс....
Упражнение развивает среднюю часть дельтовидной мышцы, надостную мышцу, расположенную под...
Упражнение сведения в кроссовере через верхние блоки, прокачивает нижнюю часть, середину и...