Задачи урока:
- Обучающие: научить сравнивать обыкновенные дроби различных видов, используя различные приемы;
- Развивающие: развитие основных приемов мыслительной деятельности, обобщения сравнения, выделение главного; развитие памяти, речи.
- Воспитательные: учиться слушать друг друга, воспитание взаимовыручки, культуры общения и поведения.
Этапы урока:
1. Организационный.
Начнем урок словами французского писателя А.Франса: “Учиться можно весело….Чтобы переварить знания, надо поглощать их с аппетитом”.
Последуем этому совету, постараемся быть внимательными, будем поглощать знания с большим желанием, т.к. они пригодятся нам в дальнейшем.
2. Актуализация знаний учащихся.
1.)Фронтальная устная работа учащихся.
Цель: повторить пройденный материал, требующийся при изучении нового:
А) правильные и неправильные дроби;
Б) приведение дробей к новому знаменателю;
В) нахождение наименьшего общего знаменателя;
(Проводится работа с файлами. Учащиеся имеют их в наличии на каждом уроке. На них пишут ответы фламастером, а за тем ненужная информация стирается.)
Задания для устной работы.
1. Назвать лишнюю дробь среди цепочки:
А) 5/6; 1/3; 7/10; 11/3; 4/7.
Б) 2/6; 6/18; 1/3; 4/5; 4/12.
2. Привести дроби к новому знаменателю 30:
1/2; 2/3; 4/5; 5/6; 1/10.
Найти наименьший общий знаменатель дробей:
1/5 и 2/7; 3/4 и 1/6; 2/9 и 1/2.
2.) Игровая ситуация.
Ребята, наш знакомый клоун (учащиеся познакомились с ним в начале учебного года) попросили меня помочь решить ему задачу. Но я считаю, что вы, ребята, сможете без меня помочь нашему другу. А задача следующая.
“Сравнить дроби:
а) 1/2 и 1/6;
б) 3/5 и 1/3;
в) 5/6 и 1/6;
г) 12/7 и 4/7;
д) 3 1/7 и 3 1/5;
е) 7 5/6 и 3 1/2;
ж) 1/10 и 1;
з) 10/3 и 1;
и) 7/7 и 1.”
Ребята, чтобы помочь клоуну, чему мы должны научиться?
Цель урока, задачи (учащиеся формулируют самостоятельно).
Учитель помогает им, задавая вопросы:
а) а какие из пар дробей мы сможем уже сравнить?
б) какой инструмент для сравнения дробей нам необходим?
3. Ребята в группах (в постоянных разноуровневых).
Каждой группе выдается задание и инструкция к его выполнению.
Первая группа: Сравнить смешанные дроби:
а) 1 1/2 и 2 5/6;
б) 3 1/2 и 3 4/5
и вывести правило равнения смешанных дробей с одинаковыми и с разными целыми частями.
Инструкция: Сравнение смешанных дробей (используется числовой луч)
- сравните целые части дробей и сделайте вывод;
- сравните дробные части (правило сравнения дробных частей не выводить);
- составьте правило – алгоритм:
Вторая группа: Сравнить дроби с разными знаменателями и разными числителями. (использовать числовой луч)
а) 6/7 и 9/14;
б) 5/11 и 1/22
Инструкция
- Сравните знаменатели
- Подумайте, нельзя ли привести дроби к общему знаменателю
- Правило начните со слов: “Чтобы сравнить дроби с разными знаменателями, надо…”
Третья группа: Сравнение дробей с единицей.
а)2/3 и 1;
б) 8/7 и 1;
в)10/10 и 1 и сформулировать правило.
Инструкция
Рассмотрите все случаи: (используйте числовой луч)
а) Если числитель дроби равен знаменателю, ………;
б) Если числитель дроби меньше знаменателя,………;
в) Если числитель дроби больше знаменателя,………. .
Сформулируйте правило.
Четвертая группа: Сравните дроби:
а) 5/8 и 3/8;
б) 1/7 и 4/7 и сформулируйте правило сравнения дробей с одинаковым знаменателем.
Инструкция
Используйте числовой луч.
Сравните числители и сделайте вывод, начиная словами: “Из двух дробей с одинаковыми знаменателями……”.
Пятая группа: Сравните дроби:
а) 1/6 и 1/3;
б) 4/9 и 4/3, используя числовой луч:
0__.__.__1/6__.__.__1/3__.__.4/9__.__.__.__.__.__.__.__.__.__1__.__.__.__.__.__4/3__.__
Сформулируйте правило сравнения дробей с одинаковыми числителями.
Инструкция
Сравните знаменатели и сделайте вывод, начиная со слов:
“Из двух дробей с одинаковыми числителями………..”.
Шестая группа: Сравните дроби:
а) 4/3 и 5/6; б) 7/2 и 1/2, используя числовой луч
0__.__.__1/2__.__5/6__1__.__4/3__.__.__.__.__.__.__.__.__.__.__.__.__7/2__.__
Сформулируйте правило сравнения правильных и неправильных дробей.
Инструкция.
Подумайте, какая дробь всегда больше, правильная или неправильная.
4. Обсуждение выводов, сделанных в группах.
Слово каждой группе. Формулировка правил учащихся и сравнение их с эталонами соответствующих правил. Далее выдаются распечатки правила сравнения различных видов обыкновенных дробей каждому учащемуся.
5. Возвращаемся к задаче, поставленной в начале урока. (Решаем задачу клоуна вместе).
6. Работа в тетрадях. Используя правила сравнения дробей, учащиеся под руководством учителя сравнивают дроби:
а) 8/13 и 8/25;
б)11/42 и 3/42;
в)7/5 и 1/5;
г) 18/21и 7/3;
д) 2 1/2 и 3 1/5 ;
е) 5 1/2 и 5 4/3;
(возможно приглашение ученика к доске).
7. Учащимся предлагается выполнить тест по сравнению дробей на два варианта.
1 вариант.
1) сравнить дроби: 1/8 и 1/12
а) 1/8 > 1/12;
б) 1/8 <1/12;
в) 1/8=1/12
2) Что больше: 5/13 или 7/13?
а) 5/13;
б) 7/13;
в) равны
3) Что меньше: 2\3 или 4/6?
а) 2/3;
б) 4/6;
в) равны
4) Какая из дробей меньше 1: 3/5; 17/9; 7/7?
а) 3/5;
б) 17/9;
в) 7/7
5) Какая из дробей больше 1: ?; 7/8; 4/3?
а) 1/2;
б) 7/8;
в) 4/3
6) Сравнить дроби: 2 1/5 и 1 7/9
а) 2 1/5<1 7/9;
б) 2 1/5 = 1 7/9;
в) 2 1/5 >1 7/9
2 вариант.
1) сравнить дроби: 3/5 и 3/10
а) 3/5 > 3/10;
б) 3/5<3/10;
в) 3/5=3/10
2) Что больше: 10/12или1/12?
а) равны;
б) 10/12;
в) 1/12
3) Что меньше: 3/5 или 1/10?
а) 3/5;
б) 1/10;
в) равны
4) Какая из дробей меньше 1: 4/3;1/15;16/16?
а) 4/3;
б) 1/15;
в) 16/16
5) Какая из дробей больше 1: 2/5;9/8 ;11/12 ?
а) 2/5;
б) 9/8;
в) 11/12
6) Сравнить дроби: 3 1/4 и 3 2/3
а) 3 1/4=3 2/3;
б) 3 1/4 > 3 2/3;
в) 3 1/4 < 3 2/3
Ответы к тесту:
1 вариант: 1а, 2б, 3в, 4а, 5б, 6а
2 вариант: 2а, 2б, 3б, 4б, 5б, 6в
8. Еще раз возвращаемся к цели урока.
Проверяем правила сравнения и даем дифференцированное домашнее задание:
1,2,3 группы – придумать на каждое правило сравнение по два примера и решить их.
4,5,6 группы - №83 а,б,в, №84 а,б,в (из учебника).
Правила сравнения обыкновенных дробей зависят от вида дроби (правильная, неправильная, смешанная дробь) и от знаменателей (одинаковые или разные) у сравниваемых дробей. Правило . Чтобы сравнить две дроби с одинаковыми знаменателями, надо сравнить их числители. Больше (меньше) та дробь, у которой числитель больше (меньше). Например , сравнить дроби:
Сравнение правильных, неправильных и смешанных дробей между собой.
Правило . Неправильная и смешанная дроби всегда больше любой правильной дроби. Правильная дробь по определению меньше 1, поэтому неправильная и смешанная дроби (имеющие в своем составе число, равное или больше 1) больше правильной дроби.
Правило . Из двух смешанных дробей больше (меньше) та, у которой целая часть дроби больше (меньше). При равенстве целых частей смешанных дробей больше (меньше) та дробь, у которой больше (меньше) дробная часть.
Например , сравнить дроби:
Аналогично сравнению натуральных чисел на числовой оси большая дробь стоит правее меньшей дроби.
Продолжаем изучать дроби. Сегодня мы поговорим об их сравнении. Тема интересная и полезная. Она позволит новичку почувствовать себя учёным в белом халате.
Суть сравнения дробей заключается в том, чтобы узнать какая из двух дробей больше или меньше.
Чтобы ответить на вопрос какая из двух дробей больше или меньше, пользуются , такими как больше (>) или меньше (<).
Ученые-математики уже позаботились о готовых правилах, позволяющие сразу ответить на вопрос какая дробь больше, а какая меньше. Эти правила можно смело применять.
Мы рассмотрим все эти правила и попробуем разобраться, почему происходит именно так.
Содержание урокаСравнение дробей с одинаковыми знаменателями
Дроби, которые нужно сравнить, попадаются разные. Самый удачный случай это когда у дробей одинаковые знаменатели, но разные числители. В этом случае применяют следующее правило:
Из двух дробей с одинаковыми знаменателями больше та дробь, у которой числитель больше. И соответственно меньше будет та дробь, у которой числитель меньше.
Например, сравним дроби и и ответим, какая из этих дробей больше. Здесь одинаковые знаменатели, но разные числители. У дроби числитель больше, чем у дроби . Значит дробь больше, чем . Так и отвечаем. Отвечать нужно с помощью значка больше (>)
Этот пример можно легко понять, если вспомнить про пиццы, которые разделены на четыре части. пиццы больше, чем пиццы:
Сравнение дробей с одинаковыми числителями
Следующий случай, в который мы можем попасть, это когда числители дробей одинаковые, но знаменатели разные. Для таких случаев предусмотрено следующее правило:
Из двух дробей с одинаковыми числителями больше та дробь, у которой знаменатель меньше. И соответственно меньше та дробь, у которой знаменатель больше.
Например, сравним дроби и . У этих дробей одинаковые числители. У дроби знаменатель меньше, чем у дроби . Значит дробь больше, чем дробь . Так и отвечаем:
Этот пример можно легко понять, если вспомнить про пиццы, которые разделены на три и четыре части. пиццы больше, чем пиццы:
Каждый согласится с тем, что первая пицца больше, чем вторая.
Сравнение дробей с разными числителями и разными знаменателями
Нередко случается так, что приходиться сравнивать дроби с разными числителями и разными знаменателями.
Например, сравнить дроби и . Чтобы ответить на вопрос, какая из этих дробей больше или меньше, нужно привести их к одинаковому (общему) знаменателю. Затем можно будет легко определить какая дробь больше или меньше.
Приведём дроби и к одинаковому (общему) знаменателю. Найдём (НОК) знаменателей обеих дробей. НОК знаменателей дробей и это число 6.
Теперь находим дополнительные множители для каждой дроби. Разделим НОК на знаменатель первой дроби . НОК это число 6, а знаменатель первой дроби это число 2. Делим 6 на 2, получаем дополнительный множитель 3. Записываем его над первой дробью:
Теперь найдём второй дополнительный множитель. Разделим НОК на знаменатель второй дроби . НОК это число 6, а знаменатель второй дроби это число 3. Делим 6 на 3, получаем дополнительный множитель 2. Записываем его над второй дробью:
Умножим дроби на свои дополнительные множители:
Мы пришли к тому, что дроби, у которых были разные знаменатели, превратились в дроби, у которых одинаковые знаменатели. А как сравнивать такие дроби мы уже знаем. Из двух дробей с одинаковыми знаменателями больше та дробь, у которой числитель больше:
Правило правилом, а мы попробуем разобраться почему больше, чем . Для этого выделим целую часть в дроби . В дроби ничего выделять не нужно, поскольку эта дробь уже правильная.
После выделения целой части в дроби , получим следующее выражение:
Теперь можно легко понять, почему больше, чем . Давайте нарисуем эти дроби в виде пицц:
2 целые пиццы и пиццы, больше чем пиццы.
Вычитание смешанных чисел. Сложные случаи.
Вычитая смешанные числа, иногда можно обнаружить, что всё идёт не так гладко, как хотелось бы. Часто случается так, что при решении какого-нибудь примера ответ получается не таким, каким он должен быть.
При вычитании чисел уменьшаемое должно быть больше вычитаемого. Только в этом случае будет получен нормальный ответ.
Например, 10−8=2
10 — уменьшаемое
8 — вычитаемое
2 — разность
Уменьшаемое 10 больше вычитаемого 8, поэтому мы получили нормальный ответ 2.
А теперь посмотрим, что будет если уменьшаемое окажется меньше вычитаемого. Пример 5−7=−2
5 — уменьшаемое
7 — вычитаемое
−2 — разность
В этом случае мы выходим за пределы привычных для нас чисел и попадаем в мир отрицательных чисел, где нам ходить пока рано, а то и опасно. Чтобы работать с отрицательными числами, нужна соответствующая математическая подготовка, которую мы ещё не получили.
Если при решении примеров на вычитание вы обнаружите, что уменьшаемое меньше вычитаемого, то можете пока пропустить такой пример. Работать с отрицательными числами допустимо только после их изучения.
С дробями ситуация та же самая. Уменьшаемое должно быть больше вычитаемого. Только в этом случае можно будет получить нормальный ответ. А чтобы понять больше ли уменьшаемая дробь, чем вычитаемая, нужно уметь сравнить эти дроби.
Например, решим пример .
Это пример на вычитание. Чтобы решить его, нужно проверить больше ли уменьшаемая дробь, чем вычитаемая. больше чем
поэтому смело можем вернуться к примеру и решить его:
Теперь решим такой пример
Проверяем больше ли уменьшаемая дробь, чем вычитаемая. Обнаруживаем, что она меньше:
В этом случае разумнее остановиться и не продолжать дальнейшее вычисление. Вернёмся к этому примеру, когда изучим отрицательные числа.
Смешанные числа перед вычитанием тоже желательно проверять. Например, найдём значение выражения .
Сначала проверим больше ли уменьшаемое смешанное число, чем вычитаемое. Для этого переведём смешанные числа в неправильные дроби:
Получили дроби с разными числителями и разными знаменателями. Чтобы сравнить такие дроби, нужно привести их к одинаковому (общему) знаменателю. Не будем подробно расписывать, как это сделать. Если испытываете затруднения, обязательно повторите .
После приведения дробей к одинаковому знаменателю, получаем следующее выражение:
Теперь нужно сравнить дроби и . Это дроби с одинаковыми знаменателями. Из двух дробей с одинаковыми знаменателями больше та дробь, у которой числитель больше.
У дроби числитель больше, чем у дроби . Значит дробь больше, чем дробь .
А это значит, что уменьшаемое больше, чем вычитаемое
А значит мы можем вернуться к нашему примеру и смело решить его:
Пример 3. Найти значение выражения
Проверим больше ли уменьшаемое, чем вычитаемое.
Переведём смешанные числа в неправильные дроби:
Получили дроби с разными числителями и разными знаменателями. Приведем данные дроби к одинаковому (общему) знаменателю:
Теперь сравним дроби и . У дроби числитель меньше, чем у дроби , значит дробь меньше, чем дробь
Правила сравнения обыкновенных дробей зависят от вида дроби (правильная, неправильная, смешанная дробь) и от знаменателен (одинаковые или разные) у сравниваемых дробей.
В этом разделе рассматриваются варианты сравнения дробей, имеющих одинаковые числители или знаменатели.
Правило. Чтобы сравнить две дроби с одинаковыми знаменателями, надо сравнить их числители. Больше (меньше) та дробь, у которой числитель больше (меньше).
Например, сравнить дроби:
Правило. Чтобы сравнить правильные дроби с одинаковыми числителями, надо сравнить их знаменатели. Больше (меньше) та дробь, у которой знаменатель меньше (больше).
Например, сравнить дроби:
Сравнение правильных, неправильных и смешанных дробей между собой
Правило. Неправильная и смешанная дроби всегда больше любой правильной дроби.
Правильная дробь но определению меньше 1, поэтому неправильная и смешанная дроби (имеющие в своем составе число, равное или больше 1) больше правильной дроби.
Правило. Из двух смешанных дробей больше (меньше) та, у которой целая часть дроби больше (меньше). При равенстве целых частей смешанных дробей больше (меньше) та дробь, у которой больше (меньше) дробная часть.
Сравнить две дроби - значит определить, какая из дробей больше, какая меньше или установить, что дроби равны.
Сравнение дробей с одинаковыми знаменателями
Из двух дробей с одинаковыми знаменателями больше та дробь, у которой числитель больше.
Пример. Дробь больше чем дробь , потому что доли в обеих дробях одинаковы, но в первой дроби их больше, чем во второй.
Если изобразим единицу отрезком и разделим его на 8 долей, то легко увидеть, что дробь больше :
Сравнение дробей с одинаковыми числителями
Из двух дробей с одинаковыми числителями больше та дробь, у которой знаменатель меньше.
Пример. Дробь больше чем дробь , потому что число долей в обеих дробях одинаково, но в первой дроби доли крупнее, чем во второй.
Изобразим две единицы в виде кругов, один разделим на 4 доли, второй на 6 долей. Теперь можно увидеть, что дробь больше :
Сравнение дробей с разными знаменателями и числителями
Чтобы сравнить дроби, у которых разные числители и знаменатели, нужно привести их к общему знаменателю. После этого их сравнивают по правилу сравнения дробей, у которых одинаковые знаменатели.
Пример. Сравните дроби: и .
Решение:
Теперь сравниваем их по правилу сравнения дробей, у которых одинаковые знаменатели. Так как , значит .
Приведём ещё один способ сравнения дробей с разными знаменателями и числителями. Рассмотрим сначала числовой пример.
Пример. Сравним дроби и .
Решение:
Приводим данные дроби к общему знаменателю:
Решая данный пример можно заметить, что, после приведения дробей к общему знаменателю, задача сравнения свелась фактически к сравнению произведений 2 · 7 и 4 · 3. Так как 2 · 7 = 14, а 4 · 3 = 12, то 2 · 7 > 4 · 3. Значит, .
Теперь решим эту же задачу в общем виде, используя буквенную запись.
Пример. Пусть даны дроби и , где a и c - нуль или натуральные числа, b и d - натуральные числа. Приведём дроби к общему знаменателю:
Следовательно:
Таким образом мы получили следующее правило сравнения обыкновенных дробей:
Чтобы сравнить две обыкновенные дроби, можно числитель одной дроби умножить на знаменатель другой и полученные произведения сравнить.
Это правило называется перекрёстным правилом сравнения дробей .
Сравнение дроби с натуральным числом
Любая правильная дробь меньше любого натурального числа.
Пример.
Сравнение неправильной дроби с натуральным числом сводится к сравнению двух дробей.
Чтобы сравнить неправильную дробь с натуральным числом, нужно натуральное число представить в виде неправильной дроби со знаменателем 1, затем их можно сравнить одним из двух способов: используя перекрёстное правило, либо привести дроби к общему знаменателю. После этого их сравнивают по правилу сравнения дробей, у которых одинаковые знаменатели.